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1. INTRODUCTION

PROBLEM: aligning temporally warped noisy sequences.
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CHALLENGES:

e Unknown number of distinct latent functions f; (or equivalently, un-
known number of groups of sequences).

e Weak assumptions on the warps (smoothness, monotonicity) without
a parametric description.

e Sequences of different lengths.

2. OVERVIEW

There are two parts to our model.

e We place GP priors on f; and g;.
o Fit these GP’s on the observed sequences y;.

MODEL
OVER TIME

This describes each observed sequence in isolation without aligning
them. Moreover, fitting both f; and g; to a single sequence y; is an ill-
posed problem. To address this, we:

e Evaluate estimated f; at fixed inputs z: S; = f;(z) + €;.

e Impose a constraint encouraging {.5;} to split into

a small number of clusters. MODEL

e Define this constraint using GP-LVM.

GOAL: find the aligned se-
quences {5, } which have high
likelihood under both parts of
the model.

5. COMPARISONS [3, 4]
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8. LIMITATIONS

Average warping error

6. CMU MOTION CAPTURE DATA
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3. MODEL

INPUTS:
Y, € RY - observed sequences
X € RY - observed (fixed) uniform sampling of time

WARPINGS:
The time warpings g, need to be monotonic, which we ensure by
parametrising them using auxiliary variables U; € R” such that

Gl =2 >, _ [softmax(U;)]; — 1.

MODEL OVER TIME:
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ALIGNMENT MODEL:
We use a GP-LVM that places independent GP’s over the data features.

LIKELIHOODS:
We treat S as if they are observed (see Limitations) calling them pseudo-
observations with the likelihood defined as an equal mixture:
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4. INFERENCE
We optimise marginal log-likelihood:
logp(S,Y,Z,G,| X) =1logp(S,Y | G, X)+1logp(S | Z) + log p(Z) + log p(G| X)

w.r.t. the pseudo observations S, the latent variables Z, warps auxiliary
variables U;, and the kernel hyperparameters.

7. HEARTBEATS DATA [1]
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Alignment error: 0.445

Two clusters
(automatically inferred)

e S needs to be observed for the two parts
of the model to be conditionally depen-
dent, thus, we directly optimise S obtain-
ing a point estimate of the aligned sequences.
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How to make the model fully generative?
e Scalability (beyond sparse GPs)
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